The Essence of Marker-based Positive Reinforcement in Dog Training
Actions that lead to beneficial outcomes are more likely to be repeated than those that do not. This process, whereby the probability of a behavioural response increases as a consequence of the outcome of that response, is referred to as positive reinforcement. Intra-cranial self-stimulation (ICSS) is a simple behavioural model that distils positive reinforcement to its minimum neural elements. In ICSS paradigms, mammals make instrumental (operant) responses in order to deliver stimulation to a specific brain area. Sites containing dopamine neurons, or their ascending projections are particularly effective in eliciting this behaviour[1], and systemic administration of dopamine antagonists causes dramatic reductions in ICSS[2], strongly implicating dopamine neurons as a neural substrate. A recent study used genetically targeted channelrhodopsin-2 (ChR2) to specifically activate Ventral Tegmental Area (VTA) dopamine neurons and confirmed that dopamine neurons are indeed sufficient to drive vigorous ICSS[3], consistent with a rich literature demonstrating that VTA dopamine neurons play critical roles in learned appetitive behaviours[4].
Dopamine is an organic chemical of the catecholamine and phenethylamine families. Dopaminergic signalling is associated with reward-motivated behaviour and motor control. In the ventral tegmental area (VTA), the mesolimbic pathway projects from the prefrontal cortex to the nucleus accumbens of the amygdala, cingulate gyrus, hippocampus, and pyriform complex of the olfactory bulb.
The dopaminergic projections in the amygdala and cingulate gyrus are responsible for emotion formation and processing. In the hippocampus, the presence of dopaminergic neurons is associated with learning, working memory, and long-term memory formation. Lastly, the pyriform complex of the olfactory bulb is responsible for providing dogs with the sense of smell.
In the mesolimbic pathway, dopamine is released during pleasurable situations, causing arousal and influences behaviour (motivations) to seek out the pleasurable activity or occupation and bind to dopaminergic receptors present in the nucleus accumbens and prefrontal cortex. Increased activity in the projections to the nucleus accumbens play a major role in reinforcement and in more extreme cases with addictions.[5]